

New Frontier of Lithium Disilicate-Based CAD/CAM Blocks & Disks

Amber[®] Mill

User's Manual

Contents

Amber® Mill 사용자 메뉴얼

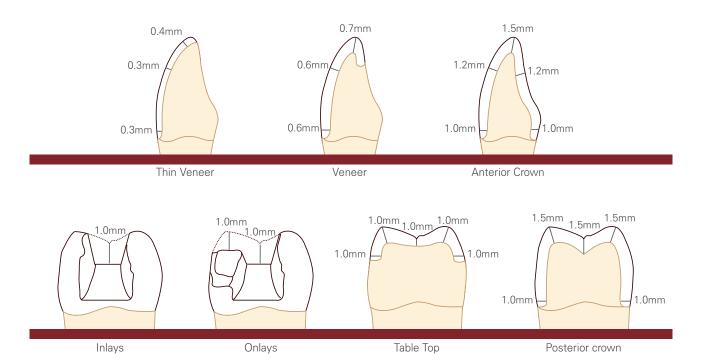
Table of Contents

1	Introduction	3
2	Preparation Guide	4
3	Block Selection	5
4	CAD/CAM Process	6
5	Before Crystallization	7
6	Crystallization for HT(High Translucency)	8
7	Crystallization for MT(Medium Translucency)	9
8	Crystallization for LT(Low Translucency)	10
9	Crystallization for MO(Medium Opacity)	11
10	Crystallization Results	12
11	Re-Firing	13
12	Co-Firing	14
13	Rapid Mode	15
14	Characterizing	16
15	Staining & Glazing	17
16	Cementation	18
17	Indications / Contra-Indications	19
18	Product Line-up	20
19	FAQs	21

1. Introduction

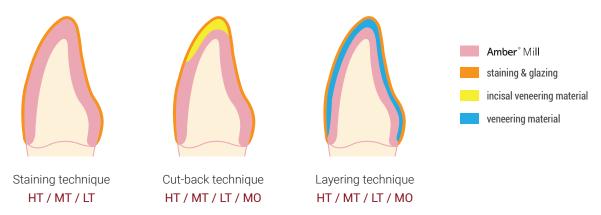
Aesthetic values

Resulting from its excellent opalescence, fluorescence and innate controllable value, Amber[®] Mill restorations feature the most natural and lifelike looks in multichromatic gradations.

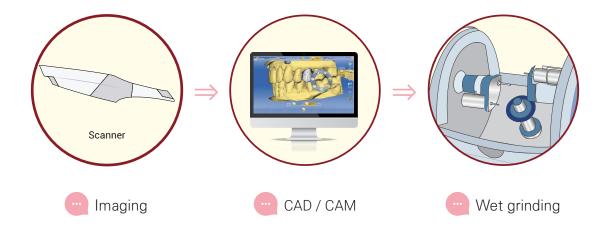

Structural stability

Cross-linked lithium disilicate after translucency heat-treatment allows that Amber® Mill crowns can achieve a high mechanical properties.(over 450 MPa)

Edge stability on NLD technology


Outstanding machinability of Amber[®] Mill is clearly proven by stable edges of the milled restorations. Less chipping occurrence with Amber[®] Mill tells you that Amber[®] Mill is the machinable lithium disilicate block for CAD/CAM system.

2. Preparation Guide


3. Block Selection

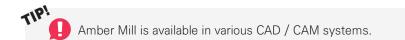
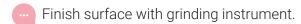
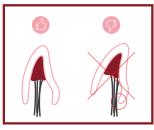
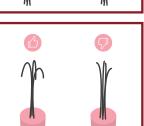
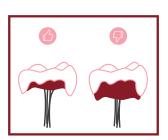

Processing Technique & Indications

Table Tops	Thin Veneers	Veneers	Inlays	Onlays	Partial Crowns	Anterior Crowns	Posterior Crowns	3-Unit Bridges	Ð
			High	n Transluc	ency				
			Modiu	ım Tranalı	loopov.				
			Mediu	ım Translu	icency				
				Low	Transluce	ency			
						Me	dium Opa	city	


4. CAD/CAM Process


5. Before Crystallization





Use peg putty before crystallization.

6. Crystallization for HT(High Translucency)

...

Dry Close

Preheat

Temperature 1

Temperature 2

Temperature 3

VAC

(off/level/hold)

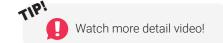
DEKEMA Austromat 624i1)

450°C

830°C

690°C

830°C


Standard Mode

	:
	02:00
	01:00
60°C /min	15:00
60°C /min	:
°C/ min	:
100%	15:00

Rapid Mode

		-:-
		01:00
450°C		01:00
790°C	100°C /min	-:
830°C	15°C /min	05:00
680°C	70°C/ min	-:-
830°C	80%	05:00

IVOCLAR VIVADENT PROGRAMAT CS2)

Standard Mode

B ℃	S min.	t ∕ ℃/ min.	T ℃		H min.	VAC. 1/	VAC. 1/ VAC. 2 °C		tL*
400	3.00	60	HT	815	15.00	HT	550/815	690	0

Rapid Mode

B ℃	S min.	t ₁ ∕ ℃/min.	t₁ ℃	H min.	t₂ ∕ ℃/min.			H min.		VAC. 1/ VA ℃	AC. 2	°C L	tL*
400	1.00	90	780	0:00	30	НТ	815	3.00	HT	690/780	780/815	690	40

1) Austromat 624i is a registered trademark of DEKEMA.

7. Crystallization for MT(Medium Translucency)

Dry

Close

Preheat

Temperature 1

Temperature 2

Temperature 3

VAC

(off/level/hold)

DEKEMA Austromat 624i1)

450°C

840°C

690°C

__°C

840°C

Standard Mode

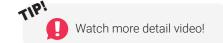
60°C

/min 60°C

/min

_°C/

min


100%

uc	
;	
02:00	
01:00	4
15:00	8
;	8
:	6
15:00	8

Rapid Mode

		-:-
		01:00
450°C		01:00
800°C	100°C /min	-:-
840°C	20°C /min	05:00
680°C	70°C/ min	-:-
840°C	80%	05:00

IVOCLAR VIVADENT PROGRAMAT CS2)

Standard Mode

B ℃	S min.	t ∕ ℃/ min.	-	T ℃		VAC. 1/ VAC. 2 °C		°C L	tL*
400	3.00	60	MT	825	15.00	MT	550/825	690	0

Rapid Mode

B ℃	S min.	t ₁ ∕ ℃/min.	t₁ ℃	H min.	t₂ ∕ ℃/min.			H min.		VAC. 1/ VA ℃	AC. 2	°C L	tL*
400	1.00	90	780	0:00	30	MT	830	3.00	MT	690/780	780/830	690	40

1) Austromat 624i is a registered trademark of DEKEMA.

8. Crystallization for LT(Low Translucency)

...

Dry
Close
Preheat

Temperature 1

Temperature 2

VAC (off/level/hold)

DEKEMA Austromat 624i1)

Standard Mode

	:
	02:00
	01:00
60°C /min	15:00
60°C /min	:
°C/ min	:
100%	15:00
	/min 60°C /min°C/ min

Rapid Mode

		-:
		01:00
450°C		01:00
800°C	100°C /min	-:-
855°C	20°C /min	04:00
680°C	70°C/ min	-:-
855°C	80%	04:00

IVOCLAR VIVADENT PROGRAMAT CS2)

Standard Mode

B	S	t ∕	T		H	VAC. 1 / VAC. 2		°C	tL*
℃	min.	℃/ min.	°C		min.	℃		C	
400	3.00	60	LT	840	15.00	LT	550/840	690	0

Rapid Mode

B ℃	S min.	t₁∕ ℃/min.	t₁ ℃	H min.	t₂ ∕ ℃/min.	t °(2 C	H min.		VAC. 1/ VA	AC. 2	°C	tL*
400	1.00	90	780	0:00	30	LT	845	3.00	LT	690/780	780/845	690	40

1) Austromat 624i is a registered trademark of DEKEMA.

9. Crystallization for MO(Medium Opacity)

...

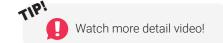
Dry
Close
Preheat

Temperature 1

Temperature 2

VAC (off/level/hold)

DEKEMA Austromat 624i1)


Standard Mode

	:
	02:00
	01:00
60°C /min	15:00
60°C /min	:
°C/ min	:
100%	15:00
	/min 60°C /min°C/ min

Rapid Mode

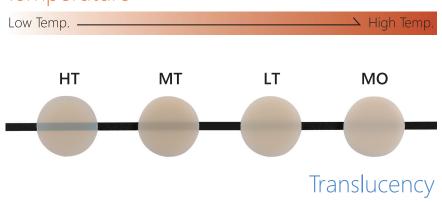
		-:-
		01:00
450°C		01:00
800°C	100°C /min	-:-
870°C	25°C /min	04:00
680°C	70°C/ min	-:
870°C	80%	04:00

IVOCLAR VIVADENT PROGRAMAT CS2)

Standard Mode

B	S	t ∕	T		H	VAC. 1 / VAC. 2		°C	tL*
℃	min.	℃/ min.	°C		min.	℃		C	
400	3.00	60	МО	860	15.00	MO	550/860	690	0

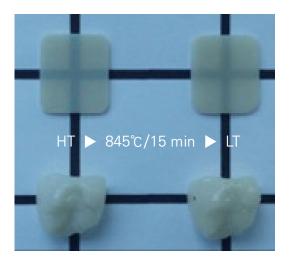
Rapid Mode


°C B	S min.	t ₁ ∕ ℃/min.	t₁ ℃	H min.	t₂ ∕ ℃/min.			H min.		VAC. 1/ VA ℃	AC. 2	°C L	tL*
400	1.00	90	780	0:00	30	МО	865	3.00	МО	690/780	780/865	690	40

1) Austromat 624i is a registered trademark of DEKEMA.

10. Crystallization Results

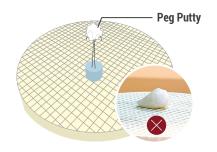
Temperature



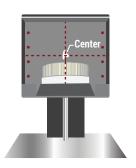
Four different translucencies(HT, MT, LT, MO) in one block.
Choose your own translucency just by changing crystallization temperature.

11. Re-Firing

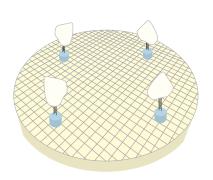
Change of Opacity(translucency) by Re-Firing


Amber® Mill A2

For value color, it is achievable to lower their translucency by re-firing them. For example, you may apply **5°C higher** re-firing than normal low translucency(LT) temperature to high translucency(HT) crowns and keep the same holding time of 15 minutes so that the final crowns can be low translucency(LT).


12. Co-Firing

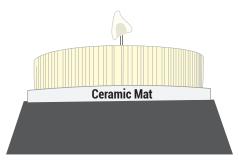
13. Rapid Mode



Metal Pin Honey-combed tray Ceramic Mat

How to apply peg putty

Instead of filling up the inside of the restoration with peg putty, we recommend you to put the minimum amount of peg putty on the metal pin and attach restoration to the pin.



RAPID MODE

Placement of restorations in the furnace

Adjust the height of the pin to be in the center of oven chamber. This will assure constant and equal heat transfer to the restoration.

Quantity and arrangement method

When arranging multiple restorations, equal spacing should be used between all restorations. (Ex. 4 restorations, it is ideal to place them in 4 equal directions)

Placement of ceramic mat

A Ceramic mat is required to be place under honey-combed tray to minimize heat loss.

Recommendation: Single Unit and/or Spray type glaze.

This is based on Austromat 624i of DEKEMA.

14. Characterizing

Ensure the surface is clean by removing bubbles. At this time, it is also necessary to work while applying water.

15. Staining & Glazing

Apply the stain in accordance with the target shade. Select Stain & Glaze products that can be fired at temperature lower than 860°C.

16. Cementation

After fit-in, etch with Hydrofluoric acid 4% for 30 seconds.

Silanize the inner aspects for 20 seconds and dry with an air syringe.

Rinse with water and dry with an air syringe.

- Adhesively lutes the prosthesis with self-adhesive resin cement.
- Please keep the etching time indication; exceeding the time can cause fragility.
 - Please refer to the manufacturer's guideline for the usage of silane.

17. Indications / Contra-Indications

Onlays

Veneers

Anterior Single Crowns

Posterior Single Crowns

3-Unit Bridge *up to the second Premolar

- Contraindications
 - Very deep subgingival preparations
 - Maryland bridges
 - Patients with severely reduced residual dentition
- Bruxism
- Cantilever bridges

18. Product Line-up

Product Line-up

Ambe	er° Mill	Dimensions (mm)	pcs / Pack
	C12	10 x 12 x 15	5 blocks
T. T.	C14	12 x 14 x 18	2 pioces
	C32	14 x 14 x 32	3 blocks
	C40	15 x 15 x 38	2 DIOCKS
800	P9808	Ø98 x 8T	
00000	P9810	Ø98 x 10T	1 disk
	P9812	Ø98 x 12T	I UISK
S S S S S S S S S S S S S S S S S S S	P9814	Ø98 x 14T	

19. FAQs

1. What is Amber® Mill's strength?(Before & after the translucency heat-treatment)

For Milling 250 MPa

Translucency heat-treatment

Final restoration Over 450 MPa

2. What powders are compatible with Amber[®] Mill?

Amber[®] Mill is compatible with a wide variety of veneering powders. As to the powders for lithium disilicate, those powders with CTE(coefficient of thermal expansion) less than or equal to 10.0 x 10⁻⁶/°C are compatible. Zirconia powders with baking temperature under 850°C are also compatible with Amber[®] Mill.

Q 3. How is the translucency heat-treatment temperature difference changing the translucency?

When applying the translucency heat-treatment, distribution of fine crystalline and coarse crystalline as well as crystal density are changed, which changes the transmission ratio of visible light. Usually, the higher heat-treatment temperature gets, the more coarse crystalline and density Amber® Mill block has. This scatters light ray more and, consequently, the translucency gets lower.

4. What should be mainly considered for the translucency heat-treatment?

(A) Combination of two factors-temperature and holding time-for the translucency heat-treatment of Amber® Mill differentiates the resulted translucency. Based on the recommended translucency heat-treatment schedule, each user is advised to verify his or her own optimized conditions for the furnace to use. Once the optimized version is identified, you will be able to create a wide range of translucency with just one Amber® Mill block and choose the exact translucency level as targeted.

• 5. Is it possible to change the translucency by re-firing?

A For highly translucent restorations, it is achievable to lower their translucency by re-firing them. For example, you may apply 5°C higher heating than normal low translucency (LT) translucency temperature to high translucency (HT) crowns and keep the same holding time of 15 minutes so that the final crowns can be low translucent (LT).

O 6. What about the chemical durability?

A When ceramic materials are exposed to moisture for a long time, degradation of material properties usually takes place because of ionic dissociation. Production process of Amber® Mill hires high purity raw materials and minimizes uninvited alkali impurities so that it generates fine crystalline structure and chemically durable glass matrix. This is why Amber® Mill performs more excellent chemical durability than existing products and ensures high long-term clinical reliability.

HASS Corporation

77-14, Gwahakdanji-ro, Gangneung-si, Gangwon-do, KOREA 25452 Tel: +82-70-7712-1300 / Fax: +82-33-644-1231 Customer Support: +82-2-2083-1367 E-mail: hasscorp@hassbio.com

Website: www.hassbio.com

This material is designed for usage in dentistry. Follow instructions HASS is not liable for any loss caused by failure to comply with regulation or scope of indication. Users are responsible for testing products to verify the compatibility for any usage which are not written in the instructions. The explanations and data contained within do not carry any guarantees and/or obligations.

All enclosed recommendations and restrictions apply when used with products from other manufacturers.